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ARTICLE INFO ABSTRACT

Article history: Purpose: For unbiased comparison of different radiation modalities and techniques, consensus on delin-
Received 7 February 2018 ] eation of radiation sensitive organs at risk (OARs) and on their dose constraints is warranted. Following
Received in revised form 16 April 2018 the publication of a digital, online atlas for OAR delineation in neuro-oncology by the same group, we

Accepted 1 May 2018

Available online 17 May 2018 assessed the brain OAR-dose constraints in a follow-up study.

Methods: We performed a comprehensive search to identify the current papers on OAR dose constraints
for normofractionated photon and particle therapy in PubMed, Ovid Medline, Cochrane Library, Embase
Keywords: . and Web of Science. Moreover, the included articles’ reference lists were cross-checked for potential
Dose constraints " . . - . .
Organs at risk studies that met the inclusion criteria. Consensus was reached among 20 radiation oncology experts in
Particle therapy the field of neuro-oncology.

European Particle Therapy Network Results: For the OARs published in the neuro-oncology literature, we summarized the available literature
and recommended dose constraints associated with certain levels of normal tissue complication proba-
bility (NTCP) according to the recent ICRU recommendations. For those OARs with lacking or insufficient
NTCP data, a proposal for effective and efficient data collection is given.

Conclusion: The use of the European Particle Therapy Network-consensus OAR dose constraints summa-
rized in this article is recommended for the model-based approach comparing photon and proton beam
irradiation as well as for prospective clinical trials including novel radiation techniques and/or
modalities.

© 2018 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 128 (2018) 26-36

The field of radiotherapy is rapidly evolving with new tech-

_ ) ) niques, e.g., MR-linac, and beam modalities, i.e., protons and carbon
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(TCP) while maintaining or reducing the normal tissue complica-
tion probability (NTCP). For comparison of the latter, ideally, con-
sensus on (1) the delineation of the organs at risk (OARs), on (2)
the tolerable radiation dose to be administered to the OARs, and
on (3) the outcome reporting measure, i.e., uniform follow-up tim-
ing, patient questionnaires and content of the follow-up, should
exist.

Regarding the first pre-requisite, Eekers et al. [1,2] recently
published a digital, online atlas for OAR delineation in neuro-
oncology on behalf of the task group “European Particle Therapy
Network” (EPTN) of ESTRO. Addressing the second required condi-
tion, it has been a while since the recommendations by Emami
et al. [3] and the QUANTEC series [4-7] were published. In an
attempt to reach the ideal conditions for comparison, we therefore
summarize the OAR’s distinct radiation induced toxicities and the
recommended dose constraints for conventionally fractionated
radiotherapy.

Moreover, we identified gaps of knowledge that need to be
filled, preferably in a prospective multi-centre effort, to fully
exploit the potential of highly conformal radiotherapy. Of note, this
summary of the literature does not explicitly cover hypofraction-
ated [ ablative regimens, carbon ion radiotherapy, re-irradiation,
or paediatric data.

Material and methods

For each of the OAR described in the EPTN delineation consen-
sus paper a dose constraint was sought for and the available data
summarized [1]. Published manuscripts were identified through
a PubMed search using combinations of (“radiotherapy” or “radia-
tion therapy” or “radiation-induced”) and “xerophthalmia”; “dry
eye syndrome”; “keratoconjunctivitis”; “retinopathy”; “cataracts”;
“optic neuropathy”; “vision loss”; “hemianopsia”; “hearing loss”;
“tinnitus”; “vertigo”; “hypopituitarism”; “neurocognition”; ‘“ra-
dionecrosis”; “Temporal lobe necrosis”; “brain stem toxicity”;
“hippocampus”; “cerebellum”; “alopecia”. Those manuscripts
available in English or French, containing data on adult patients
obtained from primary conventionally fractionated photon and
proton radiotherapy, and describing a dose-toxicity relationship
were included in this recommendation. Papers on re-irradiation,
hypofractionation, carbon ion therapy and stereotactic ablative
radiotherapy were omitted.

Relevant papers were summarized and put into Supplementary
Tables (I-X).

The relevant quantitative analyses of normal tissue effect in the
clinic (QUANTEC) papers were used for reference when applicable
as was the paper by Emami et al. [3-7].

The literature was then reviewed by 20 Radiation Oncology
experts in the field of neuro oncology and a consensus was reached
as depicted in Table 1 (see Fig. 1). The units of all dose constraints
are given in Gy regardless of the reported unit in the analysed data.
Doses were recalculated to equivalent dose in 2 Gy-fractions
(EQD2) using the formula:

EQD2 :M with D : the total dose and d : the dose per fraction

2+a/h)

Results

Orbital structures

Radiotherapy of central nervous system (CNS) tumours often
results in intentional or incidental irradiation of the different orbi-
tal structures. This gives rise to a wide variety of acute and late tox-
icities ranging from transient erythema of the peri-orbital skin to
permanent blindness. The complex anatomy and physiology of
the eye make it a challenging task to give a full and detailed
description of all toxicities, and literature on many of them is
scarce.

Lacrimal gland

The lacrimal gland system includes the main lacrimal gland,
accessory lacrimal glands and the lacrimal duct system. This sys-
tem is crucial for the production of tears, however, other struc-
tures, such as Meibomian glands or the conjunctival goblet cells
also contribute to the production of an adequate tear film. Radia-
tion injury to any of these structures might result in xerophthalmia
or the so-called dry eye syndrome (DES) and the exact contribution
of the individual components is difficult to establish [8-10]. DES
typically develops between 1 month and 3 years after irradiation,
depending on the total dose and fractionation [9,11].

In the common terminology criteria for adverse events (CTCAE)
version 4.0 three grades of xerophthalmia are identified ranging
from mild symptoms up to a decrease in visual acuity (<20/40);
limiting self-care activities of daily life (ADL) [12]. DES can lead
to damage of the conjunctival and corneal epithelium (keratocon-
Jjunctivitis sicca), which causes pain, foreign body sensation, photo-
phobia, corneal ulceration, and even perforation [13].

Several retrospective series have demonstrated that the risk of
atrophy and fibrosis of the lacrimal gland increases sharply with
the delivered dose (Supplementary Table I) [9,11,14-16]. Although
the exact clinical endpoints in these series are not always clearly
defined, they agree on a sigmoidal dose-response curve for DES
with a negligible risk at absolute maximum doses (Dpax) < 30 Gy,

Table 1
Organ a/B (Gy) Dose constraint EQD2 Toxicity
Brain [7,86-89] 2 Veo cy < 3 Symptomatic brain necrosis
Brainstem [52,92-100] 2 Surface Dy o3 ¢ < 60 Gy Permanent cranial neuropathy or necrosis
Interior Do o3 cc < 54 Gy
Chiasm & Optic nerve [23,48-54] 2 Doo3 cc <55 Gy Optic neuropathy
Cochlea [57-60,64-66] 3 Dinean < 45 Gy Hearing loss
Dinean < 32 Gy Tinnitus
Cornea [13,21] 3 Doo3 «c <50 Gy Erosion/ulceration
Hippocampus [107,108] 2 D4ox < 7.3 Gy Memory loss
Lacrimal gland [9,11,14-16] 3 Dimean <25 Gy Keratoconjunctivitis sicca
Lens [36,37] 1 Doo3 o <10 Gy Cataract
Pituitary [66,76,79,80] 2 Diean < 45 Gy Panhypopituitarism
Diean <20 Gy Growth hormone deficiency
Retina [13,23,26,31] 3 Doo3 cc <45 Gy Loss of vision
Skin [113] 2 Doo3 «c £ 25 Gy Permanent alopecia

Abbreviations: EQD2 = equivalent dose in 2 Gy per fraction; D3 .. = dose to 3 cc of structure/organ; Dg 3 c = near maximum dose to 0.3 cc of structure/organ; Dyye.n = Mmean

dose; D4ox = mean dose to 40% of the volume of both hippocampi.
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Fig. 1. A 3D representation of the OARs and the recommended corresponding dose constraints [1]: hippocampus (purple), lenses (light blue), lacrima gland (magenta),
pituitary (green), cochlea (green), cornea (pink), brainstem interior (orange), chiasm (yellow), optic nerve (yellow), brainstem surface (red), brian (red). All doses are given as
maximum dose to 0.03 cc of the OAR volume (Do g3cc). except for the dose to hippocampus, which is the D4ox, and the pituitary gland and cochlea, which are mean doses

(Dmcan)-

with a steeply increasing risk >40 Gy and a 100% rate of severe dry
eye with Dpay > 57-60 Gy [17,18].

The EPTN consensus group therefore proposes that if possible,
the mean dose (Dpean) to the lacrimal gland should not exceed
25 Gy for a risk for DES (>grade 1) less than 5%. No data were found
on an «/p ratio for the lacrimal gland and late dry eye syndrome,
therefore we suggest to assume an «/p ratio of 3 Gy for late toxicity
similar to that of the parotid gland [19].

Cornea

The cornea’s main functions are refraction of the light and pro-
tection, and even slight alterations of its shape can result in
decreased visual acuity. Corneal complications may arise sec-
ondary to the loss of the tear film (keratitis sicca) or resulting from
direct injury to the corneal surface epithelium and the deeper lay-
ers of the cornea. Direct radiation induced changes originate from
the disruption of the mitotic activity in these layers and do not
arise from the avascular cornea.

In CTCAE v4.0 keratitis is defined as a disorder characterized by
an inflammation of the cornea with severity ranging from mild
inflammation to perforation and complete blindness [12].

Even though accurate dose-volume parameters are scarce, a
dose-toxicity relationship has been described in several retrospec-
tive series [13,18,20,21]. In one retrospective analysis corneal com-
plications were evaluated after orbital radiotherapy for lacrimal
gland malignancies [21]. In this series patients were treated up
to cumulative doses of 50-60 Gy to the entire orbit. All patients
developed an acute radiation keratoconjunctivitis, 54% of the
patients had chronic corneal epithelial defects and 13% developed
a corneal perforation. These perforations generally occurred within
3 years of radiotherapy. While there are several limitations to this
analysis, it confirms that high dose radiotherapy can have serious
consequences on the ocular surface (see Supplementary Table II).
We therefore propose Dg o3  to the cornea not to exceed 50 Gy if
the orbit is not part of the target volume. Again, we propose an
«/B ratio of 3 Gy for late toxicity in absence of solid data.

Retina

The retina is the third and inner coating of the eye and is essen-
tial in visual perception. In embryogenesis both the retina and the
optic nerve originate from the diencephalon and should therefore
be considered as part of the central nervous system.

Retinopathy is characterized by slowly progressive microangio-
pathic decompensation with a focal loss of capillary endothelial
cells and pericytes [18]. Clinically, radiation retinopathy includes
microaneurysms, cotton wool pots, capillary dilation, telangiec-
tasia and capillary closure, all histopathologically resembling dia-
betic retinopathy [22,23]. The latency period is typically between

6 months and 3 years, although longer periods have been
described [18,24-26]. The CTCAE v4.0 defines retinopathy using
4 grades ranging from asymptomatic up to grade 4 blindness
(20/200 or worse) in the affected eye [12]. The pathogenesis of
radiation induced retinopathy is dependent on the total dose, the
fraction size, number of fractions, concurrent chemotherapy and
coexisting morbidity, e.g., diabetes, hypertension [23,27-29]. A
selected number of studies reported on the dose-toxicity relation-
ship for retinopathy and are depicted in Supplementary Table III
[13,26,30,31].

The risk of retinopathy increases steeply with D,y exceeding
45-50 Gy in 5 weeks. Emami et al. [3] estimated the 5% severe
complication rate in 5 years (TD5/5) of the retina, ie., visual loss,
to be 45 Gy and the 50% severe complication rate at 5 years
(TD50/5) to be 65 Gy.

We therefore propose the Dy 3 ¢ to the retina to be kept below
45 Gy. Again, we propose an 2/p ratio of 3 Gy for late toxicity in
absence of solid data [19].

Lens of the eye

The lens is a biconvex structure in the eye that helps to refract
light. Any stimulus causing posterior migration and proliferation of
the lens epithelial cells reduces the lens clarity, causing a cataract,
and often results in some degree of visual loss [32]. The CTCAE v4.0
distinguishes 4 grades of cataract based on visual acuity ranging
from asymptomatic (grade 1) to complete blindness (20/200 or
worse) in the affected eye (grade 4) [12].

Irradiating the lens can lead to cataract formation. The initial
insult consists of damage to the germinative zone of the lens
epithelium, which leads to extensive cell death, compensatory
mitosis, and the generation of the so-called ‘Wedl' cells
[18,27,32-35]. The severity and delay until onset of radiation-
induced cataracts is dose-dependent, however, the accurate
threshold is poorly understood. Several retrospective studies have
investigated the occurrence of cataract after irradiation [36,37]
(Supplementary Table IV).

While Emami et al. [3] estimated the TD5/5 of the lens to be 10
Gy and the TD50/5 to be 18 Gy, other series have demonstrated
that even lower doses can result in the occurrence of cataract
[38,39]. Recently, the International Commission on Radiological
Protection (ICRP) defined 0.5 Gy as the new threshold dose for lens
opacities, which is based on the data from population based stud-
ies in diagnostic imaging and occupational exposure [40,41].

Based on these data, the EPTN consensus panel suggests the
dose to the lens to be kept as low as reasonably achievable (ALARA)
and should not surpass Dggz . of 10 Gy. Conversely, as replace-
ment of a damaged lens is a relatively harmless procedure nowa-
days, target volume coverage should not be compromised in an
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attempt to spare the lenses. Since the limited data on an o/f ratio
for the lens suggests values of 0.76-1.2 Gy, we propose to use an o/
f ratio of 1 Gy for late toxicity [19,42,43].

Optic nerve

First described in 1956, radiation induced optic neuropathy
(RION) is a rare yet disabling condition with a potentially devastat-
ing impact on the vision of the affected eye [44]. The pathogenesis
of RION is not fully understood, but it is often considered to be
delayed radionecrosis in the CNS and thus the effect of radiation
on the optic nerve appears to be both vascular and neuropathic
in nature [23,32,45,46]. It usually presents with painless, rapid
visual loss and can occur between 3 months and 8 years after treat-
ment, with a peak between 1 and 1.5 years [45,47]. It is graded
according to the CTCAE v4.0 as grade 1 being asymptomatic, grade
2 limiting vision of the affected eye (20/40 or better), grade 3 lim-
iting vision in the affected eye (worse than 20/40) but better than
20/200 or grade 4, blindness which is 20/200 or worse in the
affected eye [12].

Complication data for RION have been reported for photons and
protons, and following irradiation for several indications. A
selected group of studies is depicted in Supplementary Table V
[23,48-54]. Emami et al. [3] suggested a TD5/5 of 50 Gy and a
TD50/5 of 65 Gy. However, in the QUANTEC analysis this was
deemed inaccurate after review of the literature concluding that
the incidence of RION was unusual for a D« < 55 Gy using con-
ventional fractionation [5]. The incidence of RION increased
between 55 and 60 Gy (3-7%) and was substantial (>7-20%) for
Dmax > 60 Gy, although it should be noted that in some studies
even at these high doses no clinically significant RION was
observed. For particles most investigators also confirmed that the
incidence of RION was low for a Dy < 54 Gy (RBE).

Within the EPTN group we therefore support the use of Dg g3 <
55 Gy for the optic nerve and suggest to use an ¢/ ratio of 2 Gy for
late toxicity [19].

Optic chiasm

In the optic chiasm, the optic nerve fibres from the nasal sides of
each retina cross to the opposite side of the brain. Toxicity of the
optic chiasm is graded similarly as in RION. However, instead of
unilateral visual loss, it typically presents as a bitemporal hemi-
anopsia or even total blindness. As pathophysiology is similar to
RION, the same principles apply, and we suggest to use the same
constraint, i.e., Do o3 ¢c < 55 Gy and o/ ratio of 2 Gy [19]. Specific
caution should be taken in patients, in whom the optic chiasm
has been manipulated, e.g., during neurosurgery.

Inner ear

The inner ear, also called labyrinth of the ear, is that part of the
ear that contains the organs responsible for hearing (cochlea) and
balance (vestibule and semi-circular canal). The bony labyrinth is
divided into three sections: the vestibule, the semi-circular canals
and the cochlea. Each section of the bony labyrinth contains peri-
lymph and a part of the membranous labyrinth. The vestibule con-
tains the utriculus and sacculus, the semi-circular canals contain a
semi-circular duct, and the cochlea contains the cochlear duct.

Cochlea

Sensorineural hearing loss (SNHL) is the most important
radiotherapy-induced complication of the inner ear, with up to
44% of patients reporting hearing loss after radiotherapy when
one of the radiation beams passes the inner ear [55,56]. Consis-
tently throughout the literature, the high frequencies appear to
be more affected than lower frequencies, and this is dose-
dependent [56-60].

Hearing loss can be graded according to the CTCAE v4.0 [12].
While early hearing loss during conventionally fractionated radio-
therapy is usually transient and commonly due to serous otitis
media, true SNHL classically occurs with a latency period of 1.5-
5years after radiotherapy and is irreversible [55,57,61,62].
Histopathologically it results from loss of cochlear primary sensory
cells and/or damage to the spiral ganglion or cochlear nerve [63].

The relationship between the dose to the cochlea and SNHL has
been extensively investigated. Emami et al. [3] identified a TD 5/5
of 60 Gy and TD 50/5 of 70 Gy for sensorineural or vestibular dam-
age. However, based on more recent dose-volume data the QUAN-
TEC consensus paper suggested the Dy,a, to the cochlea <45 Gy or
even more conservatively <35 Gy [57-60,64,65].

The recent publication by De Marzi et al. [66], who investigated
140 patients treated with photon and proton therapy for base of
skull tumours, reported on a dose-response model for the inner
ear. After qualitative correlation of Dpean With auditory toxicity
(scored as grade 1-2 hearing loss, based on CTCAE v4.0), no signif-
icant cut-off value could be determined. Considering the size of the
organ, they calculated the generalized equivalent uniform dose and
found it to be a predictive factor for late complications. For the
cochlea and inner ear, a tolerance uniform dose delivered to the
whole organ for 50% complication rate (TD 50) of 56 Gy (95%CI
53.6-58.5) and 53.6 Gy (95%CI 51.8-55.4 Gy) was reported with
slope of the response curve at TD50 (y50) of 2.8 for both and an
a-value of 1.2 and 0.1, respectively. These values are in the same
range as the QUANTEC data.

The EPTN consensus panel proposes the Dpean to the cochlea to
be kept to <45 Gy. Since, there is no clear threshold dose for hear-
ing loss after radiotherapy, the ALARA principle applies. Again, we
propose an o/f ratio of 3 Gy for late toxicity in absence of solid
data.

Besides SNHL, tinnitus is also a potential side effect from ioniz-
ing radiotherapy. CTCAE v4.0 defines tinnitus as a disorder charac-
terized by a perception of noise or ringing in the ears, and has 3
grades, based on the impact of the tinnitus on the activities of daily
life [12]. Limited data are available on the effect of dose on the
occurrence of tinnitus and it is probably under-reported. As a
result, there is no QUANTEC guideline for the cochlea to avoid tin-
nitus. Lee et al. [67] investigated the incidence of tinnitus after
intensity modulated radiation therapy (IMRT) for head and neck
cancer patients and noticed that 11.6% of developed grade >2 tin-
nitus, consistent with other reports in the literature [68,69]. Based
on a logistic and Lyman-Kutcher NTCP model derived from their
results, Dmean to the cochlea should be kept <32 Gy in order to keep
the incidence of grade >2 tinnitus <20% using IMRT [67]. External
validation of this model is thus far lacking. In the absence of data,
we suggest to use a traditional o/p ratio of 3 Gy for late toxicity
[19].

Vestibulum and semi-circular canal

Vestibular toxicity can be graded according to the CTCAE v4.0 as
vertigo or more generally as a vestibular disorder [12], even though
occasionally acute nausea following radiotherapy is reported
instead.

There is very little data concerning vestibular toxicity related to
radiotherapy. Gabriele et al. [70] investigated the vestibular func-
tion in 25 head and neck cancer patients. Eleven of these patients
showed vestibular abnormalities on electronystagmography, but
only three reported vertigo. More recently Lee et al. [71] analysed
49 consecutive nasopharyngeal carcinoma patients treated with
radiotherapy alone, of whom six reported nausea and no patient
dizziness or vertigo. Using multivariate analysis, the authors iden-
tified a correlation between the volume of the vestibules receiving
40 Gy (V40 cy) and incidence of nausea. Again, external validation is
awaited. Prospective collection of dose-volume data and accurate
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toxicity scoring is mandatory to identify dose-volume parameters
in the nearby future. As such, EPTN cannot recommend any dose-
constraint threshold for this OAR.

Pituitary gland/hypothalamus

The pituitary gland is an endocrine gland essential for the reg-
ulation of many physiological processes including growth, thyroid
gland function, reproduction, and lactation. It is closely linked to
the hypothalamus through the pituitary stalk. Dysfunction of this
hypothalamic-pituitary axis is a common problem after radiother-
apy of both brain and head and neck tumours and is associated
with significant morbidity and even mortality [72-76]. Adequate
management of radiation induced hypopituitarism is essential to
optimize outcomes and improve quality of life in these patients
[77]. The CTCAE v4.0 identifies several endocrine disorders, which
may be associated with hypopituitarism, although clinically it can
present with a large variety of non-specific symptoms and should
always be in the differential diagnosis in the follow-up of patients
treated with radiotherapy for head and neck or brain tumours [12].
Despite its high incidence, little information on the correlation
between dose and dysfunction of the hypothalamic pituitary axis
is available [74,78]. Relevant studies are depicted in Supplemen-
tary Table VI [66,76,79,80].

In children, Merchant et al. [81] described the decline in growth
hormone (GH) levels after cranial radiotherapy by an exponential
equation dependent on the radiation dose to the hypothalamus
and the follow-up time interval, which was confirmed by Agha
et al. [76] in an adult population. GH deficiency may occur after
low doses (Dmean < 40 Gy) especially in patients whose hypothala-
mopituitary axis (HPA) was impaired by the presence of a tumour
and/or previous surgery [78,82,83]. Deficiency of all anterior-
pituitary hormones occurs mainly after high dose irradiation
(Dmean > 60 Gy) in nasopharyngeal carcinoma or base of skull
tumour patients (see Supplementary Table VI) [79,80,84]. There
is a steep increase in the incidence of endocrinopathy at a Diean
or minimum dose (Dp,;,) of 40-50 Gy. Only one study attempted
to model the NTCP for the pituitary gland using the equivalent uni-
form dose and found a TD50 of approx. 60.5 Gy (95%CI: 59.1-62
Gy)[66].

Some preclinical studies suggest there may be a differential
radiosensitivity between the hypothalamus and the pituitary gland
[85]. One study by Pai et al. [80] found that doses below 20 Gy
(RBE) to the hypothalamus were associated with endocrinopathies,
while this association was only found for a Dpy,;, above 50 Gy (RBE)
for the pituitary gland. Noteworthy, target volumes of most
patients included in this analysis were located in the clivus and
strict dose constraints were imposed on the optic chiasm resulting
in a steep dose gradient between pituitary gland and hypothala-
mus. Larger dose variation and patient populations will be neces-
sary to distinguish the individual contribution of each of these
structures to HPA dysfunction. Until further data are available we
propose to use the same dose constraint to both these structures.

The EPTN consensus panel proposes a Dpean <45 Gy to the
pituitary gland in the prevention of panhypopituitarism. Of course,
if clinical context demands, higher doses may be justified. How-
ever, even at low doses deficiency of one of the hormonal axes
might occur and a rigid endocrinological follow-up needs to be
put in place, as adequate hormone replacement therapy is avail-
able and needs to be prescribed. Specific care is to be taken in
patients treated for pituitary tumours or after surgery to this area,
in which cases, lower tolerance doses should be employed [77,78].
There is currently no valuable data on the tolerance doses of the
hypothalamus. As such, EPTN cannot recommend any dose-
constraint threshold for the hypothalamus at this stage. Prospec-
tive and standardized reporting of dose and toxicity might help

us to overcome this. In addition, there are no clear data on the «/
p ratio of the pituitary gland or hypothalamus for the endpoint
hypopituitarism, therefore we suggest to use an o/f ratio of 2 Gy
for late toxicity.

Brain

Damage to the CNS is of considerable concern in the radiation
treatment of brain tumours. However, evaluating cerebral toxicity
is extremely difficult as we only begin to understand the intricate
interplay between the different substructures in physiological con-
ditions, let alone in pathological conditions. In this review two
main long-term adverse effects will be evaluated mainly
radionecrosis and neurocognition.

Brain

Despite its complexity, dose constraints to the brain and cere-
brum are uniformly applied to the entire cerebral parenchyma
without distinction between cortex, white matter and nuclei. Con-
cerning radionecrosis, Emami et al. [3] reported a TD5/5 of 60 Gy,
50 Gy and 45 Gy and a TD50/5 of 75 Gy, 65 Gy and 60 Gy if 1/3,
2/3 or the entire brain, respectively, was irradiated up to that dose.
These values appear to be too conservative in the 3D era, as the
QUANTEC project found a dose-response relationship in the brain:
the incidence of radionecrosis increases from 3% with a Dp.x < 60
Gy, to 5% at Diax = 72 Gy, and to 10% when Dp,.x = 90 Gy, using an
o/f=3 Gy [4,7]. Following the QUANTEC data, several papers
reported on the dose-volume relationship for temporal lobe necro-
sis using both photons and protons [86-89]. They all highlight the
importance of the volume receiving a certain dose in the occur-
rence of brain necrosis. The results are depicted in Supplementary
Table VII.

Based on these data, the EPTN consensus panel proposes to
Veo ¢y < 3 cc in EQD2,. The «/p ratio for brain tissue is 2 Gy for
radionecrosis [19].

Aside from radionecrosis, radiation induced white matter dam-
age can also cause serious neurocognitive disturbances [90]. How-
ever, to our knowledge there is no clear dose-volume data
available allowing us to selectively spare a specific part of the
supratentorial brain. As such we cannot recommend any dose con-
straint threshold for brain and neurocognition, and thus the ALARA
principle applies.

Brainstem

The brainstem consists of the medulla oblongata, pons and mid-
brain. It plays a crucial role as a relay between the body, the cere-
bellum and cerebrum, it gives rise to nine pairs of cranial nerves
and plays an important role in the regulation of many vital func-
tions. Damage to the brainstem is therefore a severe and poten-
tially lethal complication and can present as a wide spectrum of
clinical features depending on the location and the extent of the
damage [91]. This of course has important implications for the
dose constraints; unlike for several other OARs, no long-term tox-
icity should occur at the level of the brain stem. There are several
recommendations based on the available literature and there
seems to be a clear distinction between the dose constraints used
for photons and protons [6,91]. An overview of some selected
reports on planning constraints and toxicity are depicted in Sup-
plementary Table VIII [52,92-100].

Historically, Emami et al. [3] defined the TD5/5 for necrosis of
the brainstem as 50 Gy, 53 Gy and 60 Gy to the entire, 2/3 and
1/3 of the volume of the brainstem, respectively, and the TD50/5
of the entire brainstem was estimated at 65 Gy [101]. However,
these values appear to be overly conservative considering the data
available from recent retrospective analysis. It appears that the
entire brainstem may be treated to 54 Gy using conventional
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fractionation with limited risk of severe or permanent neurological
effects, while small volumes of the brainstem may even be irradi-
ated to Dpax =59 Gy. The risk appears to increase markedly for
Dpmax > 64 Gy [6,102].

The consensus panel therefore suggests Doz <54 Gy in
EQD2,, in particular to the interior to the brainstem. Whenever
institutions opt to use higher doses, we propose that Dgg3  of
the brainstem surface should be kept <60 Gy EQD2,, which corre-
lates with the absolute dose of 64 Gy RBE used in the proton liter-
ature for base of skull [96-100]. For both, the brain and brainstem,
we assume an o/f ratio of 2 Gy for late CNS toxicity [19].

Hippocampus

One of the most elusive long-term toxicities related to radio-
therapy of the brain is neurocognitive decline and memory impair-
ment. It has become exceedingly important in the debate
surrounding the use of more complex and expensive radiotherapy
techniques, even though the exact pathophysiology is complex and
poorly understood [103-105]. In the time of the QUANTEC project
there was insufficient evidence to support the claim that partial
brain radiotherapy in 2 Gy fractions causes neurocognitive decline
[7]. This was partly due to insufficient outcome measurements as
well as the lack of detailed brain dose-volume data. However, over
the last decade there is a growing insight into the mechanisms
behind neurocognitive disability after radiotherapy, particularly
in respect to the hippocampi, which are instrumental in learning,
memory and neurogenesis [103,106]. The seminal article by Gondi
et al. [107] compared a control group with a historical group of
patients treated for benign tumours or low grade gliomas. They
found that if the D4y of the bilateral hippocampi exceeded 7.3
Gy this was associated with a decrease in the WMS-WL delayed
recall test at 18 months. Many studies are currently underway,
investigating hippocampal avoidance in several clinical settings,
however, we are still awaiting results. Imaging studies have
revealed that doses exceeding 40 Gy resulted in a significant atro-
phy of the hippocampus (see Supplementary Table VIII) [108].

Based on these data it is somewhat preliminary to propose dose
constraints to the hippocampus. If possible, the dose to the
hippocampi should be kept ALARA and preferably the D4oy of both
hippocampi combined should be kept below 7.3 Gy. Again, an o/f
ratio of 2 Gy for late CNS toxicity.

Cerebellum

Classically, the cerebellum is known for its role in the regulation
and coordination of movement posture and balance. Radionecrosis
could thus have an important influence on these factors. For this
outcome there is currently no data suggesting a different radiosen-
sitivity of the cerebellar cortex or white matter, and thus the same
constraints as those used in the brain are proposed.

Interestingly there is more and more evidence that the cerebel-
lum is also involved in cognitive functions [109]. In paediatric
patients with infratentorial ependymoma one report found a corre-
lation between the infratentorial radiation dose and neurocogni-
tive decline [110]. However, in adults this evidence is lacking
and so to date no clear dose constraints can be defined for the ante-
rior and posterior cerebellum.

Skin

Radiation to the scalp can give rise to several toxicities. Since
the skin itself is rarely part of the target volume in primary brain
tumours, temporary and permanent alopecia is the most important
late toxicity after radiotherapy. Temporary alopecia can occur after
very low doses, while permanent alopecia requires relatively
higher doses to the skin [111,112]. Lawenda et al. [113] performed
an depth dose-response analysis on permanent alopecia at >12
months in patients treated with photons for a primary CNS

tumour. After multivariate analysis, only the follicle dose was sig-
nificantly correlated to permanent alopecia. In the dose-response
relationship the TDsy was estimated at 43 Gy EQD2 (95%CI 33—
52) with a y50 slope of 0.9 (95% CI 0.3-1.4). Using this dose-
response relationship, a follicle dose of 25 Gy is associated with
<20% risk of permanent alopecia grade >3. In order to avoid this
side effect a reduction of the dose to the hair follicles should be
attempted.

The EPTN therefore suggests the Dgg3 (. of the skin should be
kept <25 Gy to avoid permanent focal alopecia and consequently
the V5 gy to the skin should be kept ALARA. The suggested o/ ratio
for the skin is 2 Gy [19,113].

Discussion

Despite the increasing number of patients treated with radio-
therapy for brain tumours, scarce precise information is available
on the relationship between dose and toxicity of the central ner-
vous system. In the past several efforts have already been under-
taken to try and summarize the available evidence on the
tolerance of normal tissues [3,4,101]. However, several relevant
OARs, such as the lacrimal gland, the cornea, the vestibulum and
semi-circular canals, the HPA, hippocampus, cerebellum and skin
were not discussed in these papers. In addition, the increasing
availability of highly conformal photon and proton therapy, the
widespread use of image-guided and adaptive radiotherapy enable
the radiotherapy community to deliver high doses to the target
volume and selectively spare certain organs at risk. While dosimet-
rically these techniques might produce ‘better’ treatment plans,
they do not always translate into clinical reality. In order to justify
the use of these expensive treatments and make an accurate esti-
mation of the benefit of one technique over the other, an objective
estimation of the normal tissue complication rate is crucial
[114,115]. Such a model-based approach allows us to compare dif-
ferent treatment strategies and select patients who will most likely
benefit from a certain technique based on the difference in NTCP
models between two techniques. These NTCP models need to
incorporate both dosimetric and clinical factors and provide us
with objective data on the superiority of one technique over the
other [4,101,116]. However, the construction of these models
requires a large amount of uniformly scored patient data. Conse-
quently, for all OAR and toxicities described in the manuscript,
such a multifactorial NTCP model is not available.

Therefore, one of the key goals of the EPTN is to try and set-up a
framework for international cooperation within the radiotherapy
community, which allows the introduction of a uniform,
consensus-based means for data collection. In a first consensus
paper, relevant OARs in neuro-oncology were selected and delin-
eation guidelines were given [1]. This manuscript aimed to review
the available evidence on the dose-toxicity relationship for the
previously defined OAR. While we succeeded in producing a con-
sensus table on dose constraints (see Table 1), there are several
shortcomings of the data presented here.

First, as is clear from this review, the vast majority of dose con-
straints rely on the reports from retrospective, single centre stud-
ies. Furthermore, in most of the cases no accurate dose-volume
analysis could be done as the majority of patients within each ser-
ies is treated for a variety of primary tumours with a variety of
doses and fractionation schedules, using old radiotherapy tech-
niques, and without uniform contouring of the OARs. We can
therefore only estimate the dose delivered to a certain OAR. Also,
in the majority of cases absolute doses are reported, with little to
no information on the exact fractionation, making it impossible
to recalculate the doses to EQD2. For the consensus table we aimed
to define all Dy, constraints in EQD2, using the linear quadratic
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formula, this allows us to recalculate the dose depending on the
number of fractions (Fig. 2) [117]. Of note, this conversion using
the linear quadratic formula does not apply to Dpean dose con-
straints. Instead, the mean dose to the OAR and its standard devi-
ation is required for this conversion, and therefore, we cannot
provide these technique-dependent values [118,119]. In keeping
with the ICRU 83 and 91 reports we avoided using the maximum
absorbed dose at a single calculation point (Dp.yx) for the constraint
table [120,121]. However, for larger OARs such as the brain and
brainstem, the classical D,y might result in a relatively large vol-
ume exceeding the tolerance dose. We therefore opted to use the
Do.03 c as this approximates the Dy, used in the majority of the
literature, since this depends less on the treatment planning sys-
tem and scanner parameters used, and thus provides a more real-
istic calculation of the delivered dose. Only dose parameters
related with specific toxicities were included in the consensus
table, however, for planning purposes it is obvious that more than
one dose-volume parameter should be included in the optimiza-
tion process (as objectives or constraints) to ensure the optimal
plan is generated.

Second, when setting dose constraints we assume a dose-
volume effect for the structures, and set a threshold below which
the odds of a certain toxicity are reasonable. The outcome of this
exercise depends highly on the severity of the toxicity and at what
cost the dose is pushed below a certain threshold. Conversely, it is
obvious that RT related toxicity is a more complex and multifacto-
rial process where genetic disposition, co-morbidities, dosimetric
and clinical factors all play an important role in explaining why
some patients experience excess toxicity at low doses and others

can be treated up to high doses without any toxicity [116]. This
interplay is impossible to grasp in a single parameter and, again,
requires more complex models, which incorporate clinical, genetic,
and dosimetric factors into a multifactorial NTCP model, which
allows for an individual patient-based risk assessment.

Third, toxicity was not uniformly scored in all series. In the
review several toxicity scoring mechanisms have been used, with
the RTOG/EORTC Late Effects Normal Tissue Task Force subjective,
objective, management, and analytic (LENT/SOMA) score and
CTCAE being the most prominently used [12,122]. Uniform scoring
of toxicity is of utmost importance when constructing a prospec-
tive database. Throughout the manuscript, we promote the use of
the CTCAE scoring system as it is widely accepted and applicable
and allows for a more detailed scoring of the severity of toxicity
compared to the LENT/SOMA evaluation. Aside from the physician
scored toxicity, patient reported outcome (PRO) scoring systems
should also be implemented, in the prospective data collection as
several studies have demonstrated that there is severe discrepancy
between patients and physician reported toxicities and that gener-
ally physicians tend to underreport the presence and severity of
treatment related toxicities [123,124].

Fourth, it is very important to realize that there is an interplay
between different structures when looking at toxicity. For exam-
ple, while DES and corneal damage are described separately, in
reality they are very closely interlinked. This interplay, however,
is not taken into account when proposing a single dose constraint
for the lacrimal gland. The problem becomes even more complex
when looking at a toxicity which is multifactorial in principle such
as neurocognition [107,109,125]. While the hippocampus was
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among the first structures to be related to neurocognitive decline,
and is instrumental in learning and memory, it is not the only
structure responsible for good cognitive functioning. The pre-
frontal cortex, the cerebellum and the hypothalamus all play an
important role in the higher cognitive function of the brain
[105,109,125,126]. To what extent radiation induced damage to
these structures impairs their function is far less understood. With
increasing practice to spare the hippocampus, the relative impor-
tance of these or other structures will become increasingly
important.

Therefore, it is important that the summary constraint table in
this manuscript is not to be considered as an endpoint. As radiation
techniques evolve, treatment changes and survival improves, rele-
vant toxicities will also evolve. While some toxicities were initially
of great importance and dose limiting, they can become less fre-
quent and other toxicities gain the upper hand. An example for this
is optic neuropathy. While frequently reported in older papers,
there have been no relevant papers on this toxicity using conven-
tionally fractionated radiotherapy since the QUANTEC report [5].
This can partly be explained by the combination of clear dose con-
straints with the ability to effectively reduce the dose to the optic
nerve using conformal radiotherapy techniques.

The true value of this manuscript lies in the fact that it provides
a consensus on the dose constraints for relevant OARs in the treat-
ment of brain tumours among experts in the field. Of note, it is only
a consensus, with all the shortcomings described above. Together
with the delineation guidelines by Eekers et al. [1], however, it is
a starting point for uniform OAR delineation and dose prescription.
If we succeed in setting up a standardized follow-up with prospec-
tive scoring of toxicity it provides a basic framework within which
a large number of patients are treated and followed uniformly and
thus can be used to develop and validate multifactorial NTCP
models.

Fifth, all constraints in Table 1 are reported in EQD2 unless
otherwise reported. To facilitate conversion we suggested an «/f
ratio based on the best available evidence found, while it should
be noted that there is considerable uncertainty regarding these
ratios [19,127]. In principle, the dose constraints are useful for both
photon and proton radiotherapy provided that a conversion factor
of 1.1 for conventional fractionation is used to account for the dif-
ference in RBE [128]. However, at the very distal edge of the Bragg
peak, the linear energy transfer is higher, resulting in an increased
RBE [129]. This is of concern as the distal edge of the Bragg peak is
often very close or even overlapping with the dose-limiting OAR
and might result in unexpectedly high toxicity or abnormal imag-
ing changes [130-132]. Therefore, close observation of all these
patients remains crucial.

Finally, the set of dose constraints aims to provide assistance to
the physician and physicist/dosimetrist in the difficult task of com-
ing up with the optimal plan for each patient, balancing out
tumour control and potential toxicity with regard to the age, co-
morbidities and life expectancy of the patient. From this review
it should be obvious that they are not absolute values and the risks
and benefits of each treatment should be thoroughly discussed
with the patient.
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